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Surfaces and Roughening 

D. B. Abraham 1 

Received September 30, 1983 

Some recent results in the application of statistical mechanics to surfaces are discussed. 
Only exactly soluable models are described. First, we consider phase separation be- 
low the critical temperature in unlaxial ferromagnets and their analogs. We then con- 
sider the determination of the equilibrium shape of a crystal having fixed volume, 
given the orientation-dependent surface tension, using the Wulff construction. 
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1. I N T R O D U C T I O N  

The aim of this lecture is to describe some recent results in the application 
of  statistical mechanics  to surfaces. In  view of the restriction of space, only 
exactly solvable models will be considered, in the hope  that, a l though they 
neglect m a n y  aspects of boundaries  in real physical systems, they will 
nevertheless reveal qualitative truths. 

The first problem to be considered is phase separation below the 
critical temperature in uniaxial ferromagnets  and their analogs. This goes 
back to van der Waals  (for fluids), (0 whose theory was subsequently 
developed by Cahn  and  Hilliard (2) and by Fish and  Widom.  (3) All these 
theories are to a degree phenomenological  since they are based on a free 
ene rgy  density functional  which is not  derived f rom a Hamil tonian.  The 
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main conclusion is that there is a surface tension and a magnetization 
profile between oppositely magnetized pure states (or phases) which varies 
on the scale of the bulk correlation length of a pure phase. (4) On the other 
hand consider a simple drumhead model in which the interface, or domain 
wall, is represented by a membrane that has a divergent mean square 
displacement as the cross-sectional area increases. Such exact results as 
there are (5'6) favor the latter situation, but the following question is natural: 
suppose one were able to locate the fluctuating interface. What is the local 
structure like if such a concept is sensible? 

The second problem is the determination of the equilibrium shape of a 
crystal having fixed volume, given the orientation-dependent surface ten- 
sion, using the Wulff construction. Until rather recently, the only known 
results for the surface tension at nonzero temperature were for the planar 
Ising model; these will be reviewed. In the last few months, some most 
interesting results have been found for surfaces in three-dimensional sys- 
tems, based on the Eberlein construction. (v) One line of approach is via the 
aforementioned Wulff plot, and the other is essentially through the terrace- 
ledge-kink (TLK) model of Burton, Cabrera, and Frank. (8) In this way, 
examples of phase transitions with facet formation and associated de- 
roughening can be found, as well as examples of surface reconstruction. 

2. PHASE SEPARATION IN THE PLANAR ISING MODEL 

Consider the geometry and parametrization shown in Fig. 1. Let the 
magnetization at the point (x, y) be m(x, y IN). The following limiting 

+If 
+I I 

+_I I_ K2 If*_ 

Fig. 1. Ising strip lattice showing coordinates, boundary conditions, and labeling of nearest- 
neighbor ferromagnetic couplings in units of k B 7". 
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result can be obtained(5~ : fl E ( -  1, 1), 

f l lim m((1 + f l)N/2,  c~N'/2]N) m * s g n ~  -bl~--!~ (1) 
(1 

where m* is the spontaneous magnetization, (9) b = [sinh2(K] ~ - K 2 ) ]  1/2 
with exp 2K* = coth K and 

2 fooXe ,2du (2) |  = 

The surface tension associated with the phase transition is defined as 

~-(0) = N~lim Nt log(Z + / Z  + - )  (3) 

where the argument of the logarithm is the ratio of partition functions for 
infinite strips, Z § - for boundary conditions as in Fig. 1, but Z + having + 
spins on the boundary and therefore no separation of phase. A calculation 
shows that 

~-(0) = 2K - log coth K (4) 

Fisher, Fisher, and Weeks (w) made an extremely useful observation 
about (1): the limiting result can be obtained heuristically from simple 
fluctuation theory, provided an angle-dependent surface tension is used(6~; 
this is obtained by sliding up the right-hand edge of the strip in Fig. 1. The 
simplest, and completely rigorous, calculation is to use duality to a pair 
correlation function between boundary spins with free edges. (!1) The only 
further assumption needed to recapture (1) is that on crossing the interface 
the state changes abruptly between homogeneous phases; this surely cannot 
be precisely true, and indeed is not, as will now be shown. 

Define 

r h ( x , y ) =  lim m ( x , y [ N )  (5) 
N~-)~ 

Then an intrinsic magnetization mint(Y ] n) will be defined by 

0y mint(n , y)  = 2 Pcap(Y0 [ n) Oymint(Y - Yo I n) (6) 
Y0 

through a suitable choice  of Pcap(Yo[n) motivated by fluctuation theory 
alluded to above. The operation Oy is a partial difference inserted for 
analytical convenience. The idea of the convolution structure in (6) is to 
remove the capillary fluctuations from rh to get min t. The motivation is 
Ornstein-Zernike theory. Recently nS(n, y)  has been calculated exactly for 
large n and (6) has been solved by Fourier methods to give mint(Y I oo) as an 
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integral: 

where 

with 

m* f0 2~r " mi~(yl ~)= G-~ d ~ e ' Y * g ( ~ ) / ( e  '~ ' -  1) 

g ( ~ )  - 
1 + e i~*('~) e i ' ~  B 1 - d - 1  

] 

(7) 

(8) 

( e  i~ - A - ' ) ( e  i~ - 8 )  ( 9 )  

where A = coth K~coth/<2, B = coth K~tanh K 2. 
The pair correlation can also be conditioned by the device of (6) so 

that one point lies a given distance, say y, from the interface. Suppose the 
other has a relative coordinate (X,0); (see Fig. 1) then the conditioned 
function C(x [y) is given by 

C(xly)--mint(Y)-~ f02~e X['(~)-v(~ (I0) 

where 

cosh 7 (~) -- cosh 2K~cosh 2K 2 - sinh 2K~sinh 2K2cos w (11) 

as x ~ oo, which behaves as 1/~fx- in this regime. This proves the existence 
of long-ranged correlations in the interface, as suggested by Wertheim (12) 
and Weeks. (13) 

3. PHASE TRANSITIONS IN SURFACES 

Returning to the notion of an orientation-dependent surface tension 
and the Wulff construction, the equilibrium shape of a crystal denoted S is 
given by (14) 

min[ f + XV(S)] (12) 

where S labels the surface with normal n~, included volume V(S), and a 
Lagrange multiplier ~. The surface tension "r(0) for the planar Ising model 
as a function of angle 0 is known, giving the plots of Figs. 2a and 2b. There 
are cusps at T = 0 corresponding to facets which roughen for T > 0 giving 
a smooth mean shape about which there are large fluctuations. 
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Fig. 2, The Wulff construction. In each case the outer curve is a polar plot of the surface 
tension. The inner is the crystal shape (up to a scale factor) determined as follows: for each 
angle 0 draw a line L o from the origin to cross the surface tension curve. At the intercept draw 
a perpendicular to L o . The inner envelope of all perpendiculars is the crystal shape. For (a), 
k s T / J  = O, whereas for (b), k s T / J  = O. 1, 
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The orientation-dependent surface tension for the BCSOS model (15) 
has recently been obtained. (16) This model is based on the Eberlein con- 
struction (7) of a surface associated with a square lattice: crossing each edge 
of the lattice the height of the surface changes by exactly + 1. This is 
labeled by a directed arrow on the edge. Height conservation round closed 
loops is guaranteed by the six-vertex construction ~7) (see Fig. 3). Van 
Beijeren showed that such a model has a phase transition of Rys-F type (17) 
from a flat low-temperature structure with bounded height fluctuation to a 
rough high-temperature structure with 

((h 10) - [h(r)]2>~A ( r ) log l r  I (13) 

where h(x) is the height at point x. To carry out the Wulff construction, 
one needs the vertex weight assignments with nonzero *h; this case was 
solved by Sutherland, Yang, and Yang. (17) it  turns out that the crystal 
shape is determined completely by the free energy as a function of 
horizontal and vertical electrical fields. 

0 �9 

hx=-hy= l  

el = J --qx +~y 

�9 0 

0 o- 

hx =- hy =-1 
ez=J +-qx--qy 

0 ! e-- 

hx=hy=- I  

e 3 = J + ~ x+'qy 

�9 l o . t  o . T  o 

o 1 :  o l .  o l .  
hx= hy : 1 h x :  hy = 0 hx = hy = 0 

e~=J -~qx-'qy es=O e6 = 0 

Fig. 3. Wulff construction for the BCSOS model on the (100) face. The filled circles 
represent atoms in the top layer of the lattice, whereas the open circles represent atoms a 
half-layer down at the body-centered positions. A minus sign indicates that the top atom is 
missing. Only in-plane bond energies with value - J appear. The variables h i for i = x,  y are 
the height differences in the coordinate directions, corresponding to polarizations in the usual 
six-vertex notation. The h i are coupled to electric field variables ~1i, i = x, y. 
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Terroce 
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Fig. 4. Morphology of the terrace-ledge-kink (TLK) model. The terraces have neither pits 
nor adatoms. 

A brief summary of the conclusions is as follows: 
1. There is a phase transition at the F-model transition TR(J ) 

= J/kblog2.  
2. For T > TR(J), the surface is approximately spherical and as 

T o  TR(J ) + the curvature goes to a finite limit. 
3. When T o  TR(J ) - ,  the curvature jumps to zero over a facet of 

radius R given by 

?tR~const  e x p { -  cons t / [  TR(J ) - T] 1/2} (14) 

where A is the Lagrange multiplier which fixes the volume. The facet goes 
over to a square as T-~ 0. 

There is another Eberlein construction which is associated with the 
terrace-ledge-kink (TLK) model of Burton, Cabrera, and Frank, (8) illus- 
trated in Fig. 4. For technical reasons, a lattice rotated at 45 ~ is used; 
straight ledges correspond to zig-zag structures; they which cannot overlap 
or form closed loops but they can touch at vertices of the underlying lattice. 
Such contacts are counted only once. The vertex weights are shown in Fig. 
5. The statistical mechanical problem is to solve the six-vertex problem with 
horizontal and vertical fields, but with the simultaneous restriction that the 
number of ledges be fixed. This is a generalization of Sutherland, Yang, 
and Yang (17) which fortunately can be solved exactly. The main results are 
as follows: 

1. When b > 0 (ledge attraction), there is a phase transition at 
e b = (1 + w) 2 to a low-temperature phase in which the ledges aggregate into 
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Fig; 5. Vertex configurations for the six-vertex version of the TLK model. From the right, the 
vertices 6 and 5 correspond to straight ledges. Vertices 4 and 3 are kinks with Boltzman weight 
w ~< I. Vertex 2 is a terrace site. Vertex 1, with weight e b, is a meeting of two ledges. 

a finite number of macroscopic cliffs. The high-temperature phase is rough 
with a uniform distribution of ledges. The ledge-ledge correlation function 
oscillates with a period or (l/density of ledges) and a power-law envelope 
which gives a rough surface. 

2. When b < 0, there is a phase transition only when the angle of 
surface is ~r/4, which presumably involves facet formation, with an octago- 
nal crystal structure. 

There is also an interesting paper by B16te and Hilhorst (~8) in which a 
roughening transition is associated with the zero-temperature triangular 
Ising model. This appers to be of the TLK-reconstructive rather than of the 
BCSOS type. 
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